AVALIAÇÃO CRONOLÓGICA DE MANCHAS DE SANGUE SOBRE TECIDOS TÊXTEIS VIA ESPECTROFOTOMETRIA DE COR E LAVAGEM ENZIMÁTICA

Antonio Augusto Canelas Neto, Antônio Augusto Ulson de Souza

Resumo


Manchas de sangue são um dos vestígios mais importantes para a investigação forense. Permitem rápido reconhecimento visual de um crime, reconstruções e grande facilidade na extração de perfis genéticos. Com base nas pesquisas, vêm-se buscando novas aplicações deste vestígio para a criminalística. Uma das mais promissoras é o tempo desde o depósito (TDD) da mancha de sangue, o que fornece a estimativa do tempo decorrido do crime. Métodos diversos têm sido sugeridos em vários institutos de pesquisa do mundo, mas os resultados têm apresentado restrições e pouco emprego prático para o Perito criminal. Uma nova forma de abordar o problema é sugerido no presente estudo pela avaliação espectrofotométrica de tecidos saturados com sangue como, por exemplo, as vestes da vítima. Esta escolha permite a utilização da amostra também em um processo de lavagem enzimática, parametrizando o TDD pela resistência à remoção desta mancha. Espectrofotômetros de última geração são capazes de criar banco de dados e transformar espectros em equações matemáticas, interpolando-as. A medição de espectros de cor ao longo de uma cinética de lavagem enzimática é inovadora porque aumenta as hipóteses de medição sobre a amostra, ao contrário de pesquisas tradicionais em espectrofotometria que se utilizam de uma leitura.


Palavras-chave


Tempo desde o depósito. Local de crime. Perícia Criminal. Criminalística. Espectrofotometria.

Texto completo:

PDF

Referências


ACKERMANN, K.; BALLANTYNE, K. N.; KAYSER, M. Estimating trace deposition time with circadian biomarkers: A prospective and versatile tool for crime scene reconstruction. International Journal of Legal Medicine, v. 124, n. 5, p. 387–395, 2010.

AGUDELO, J. et al. Ages at a Crime Scene: Simultaneous Estimation of the Time since Deposition and Age of Its Originator. Journal of Forensic Sciences, Analytical Chemistry, v. 88, n. 12, p. 6479–6484, 21 jun. 2016. Disponível em: https://pubs.acs.org/doi/10.1021/acs.analchem.6b01169.

ALSHEHHI, S.; MCCALLUM, N. A.; HADDRILL, P. R. Quantification of RNA degradation of blood-specific markers to indicate the age of bloodstains. Forensic Science International: Genetics Supplement Series, v. 6, n. August, p. e453–e455, 2017.

ANDERSON, S. et al. A method for determining the age of a bloodstain. Forensic Science International, v. 148, n. 1, p. 37–45, 2005. Disponível em: http://dx.doi.org/10.1016/j.forsciint.2013.11.008.

ANDRASKO, J. The estimation of age of bloodstains by HPLC analysis., v. 42, n. 4, p. 601–607, jul. 1997.

BERGMANN, T.; HEINKE, F.; LABUDDE, D. Towards substrate-independent age estimation of blood stains based on dimensionality reduction and k-nearest neighbor classification of absorbance spectroscopic data. Forensic Science International, v. 278, p. 1–8, set. 2017. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0379073817302050.

BREMMER, R. H.; NADORT, A.; et al. Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy. Forensic Science International, v. 206, n. 1–3, p. 166–171, 2011. Disponível em: http://dx.doi.org/10.1016/j.forsciint.2010.07.034.

BREMMER, R. H.; DE BRUIN, D. M.; et al. Biphasic oxidation of Oxy-Hemoglobin in bloodstains. PLoS ONE, v. 6, n. 7, p. 1–6, 2011.

BREMMER, R. H. et al. Forensic quest for age determination of bloodstains. Forensic Science International, v. 216, n. 1–3, p. 1–11, 2012. Disponível em: http://dx.doi.org/10.1016/j.forsciint.2011.07.027.

BUENO, L. et al. Modelling the kinetics of stain removal from knitted cotton fabrics in a commercial Front Loader Washing Machine (FLWM). Chemical Engineering Science, v. 200, p. 176–185, 2019. Disponível em: https://doi.org/10.1016/j.ces.2019.02.008.

CANELAS NETO, A. A. Perfis de Manchas de Sangue - Do Local de Crime à Elaboração do Laudo. 1. ed. São Caetano do Sul/SP: Lura, 2017. Disponível em: www.bloodtraining.com.

CAVALCANTI, D. R.; SILVA, L. P. Application of atomic force microscopy in the analysis of time since deposition (TSD) of red blood cells in bloodstains: A forensic analysis. Forensic Science International, v. 301, p. 254–262, 2019.

COURTS, C.; MADEA, B. Micro-RNA - A potential for forensic science? Forensic Science International, v. 203, n. 1–3, p. 106–111, 2010. Disponível em: http://dx.doi.org/10.1016/j.forsciint.2010.07.002.

DOTY, K. C.; MURO, C. K.; LEDNEV, I. K. Predicting the time of the crime: Bloodstain aging estimation for up to two years. Forensic Chemistry, v. 5, p. 1–7, set. 2017. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S2468170917300218.

FU, J.; ALLEN, R. W. A method to estimate the age of bloodstains using quantitative PCR. Forensic Science International: Genetics, v. 39, n. May 2018, p. 103–108, 2019. Disponível em: https://doi.org/10.1016/j.fsigen.2018.12.004.

FUJITA, Y. et al. Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: Long-term controlled experiment on the effects of environmental factors. Forensic Science International, v. 152, n. 1, p. 39–43, 2005.

HANSON, E. K.; BALLANTYNE, J. A blue spectral shift of the hemoglobin soret band correlates with the age (time since deposition) of dried bloodstains. PLoS ONE, v. 5, n. 9, p. 1–11, 2010.

INQUE, H. et al. A new marker for estimation of bloodstain age by high-performance liquid-chromatography. Forensic Science International, v. 57, n. 1, p. 17–27, nov. 1992.

JELLOULI, K. et al. Alkaline-protease from Bacillus licheniformis MP1: Purification, characterization and potential application as a detergent additive and for shrimp waste deproteinization. Process Biochemistry, v. 46, n. 6, p. 1248–1256, 2011. Disponível em: http://dx.doi.org/10.1016/j.procbio.2011.02.012.

KIND, S. S.; PATTERSON, D.; OWEN, G. W. Estimation of the age of dried blood stains by a spectrophotometric method. Forensic Science, v. 1, n. 1, p. 27–54, 1972.

KOLBASOV, A. et al. Blood rheology in shear and uniaxial elongation. Rheologica Acta, v. 55, n. 11–12, p. 901–908, 22 dez. 2016. Disponível em: http://link.springer.com/10.1007/s00397-016-0964-1.

MAJDA, A. et al. Hyperspectral imaging and multivariate analysis in the dried blood spots investigations. Applied Physics A, v. 124, n. 4, p. 312, 15 abr. 2018. Disponível em: http://link.springer.com/10.1007/s00339-018-1739-6.

MANUAL INSTRUÇÃO KONICA MINOLTA, M. CM-3600A Manual Instrução. p. 40, 2011.

MATSUOKA, T.; TAGUCHI, T.; OKUDA, J. Estimation of bloodstain age by rapid determinations of oxyhemoglobin by use of oxygen-electrode and total hemoglobin. Biological & Pharmaceutical Bulletin, v. 18, n. 8, p. 1031–1035, 1995.

MIKI, T.; KAI, A.; IKEYA, M. Electron spin resonance of bloodstains and its application to the estimation of time after bleeding. Forensic Science International, v. 35, n. 2–3, p. 149–158, 1987.

MORTA, W. A study on nucleic acid degradation in drying and dried bloodstains as a means to determine the time since deposition. PhD Thesis, Chemical Sciences, University of Auckland, New Zeland, p. 1–194, 2012.

NIYONZIMA, F. N.; MORE, S. Detergent-compatible proteases: Microbial production, properties, and stain removal analysis. Preparative Biochemistry and Biotechnology, v. 45, n. 3, p. 233–258, 2015.

PATTERSON, D. Use of reflectance measurements in assessing the colour changes of ageing bloodstains. Nature, v. 187, n. 4738, p. 688–689, 1960.

SAKURAI, H. et al. Dating of human blood by electron spin resonance spectroscopy. Naturwissenschaften, v. 76, n. 1, p. 24–25, 1989.

SCHWARZACHER, P. D. Determination of the Age of Bloodstains. The American Journal of Police Science, v. 1, n. 4, p. 374–380, 1930. Disponível em: http://www.jstor.org/stable/1147182.

SEOK, A. E. et al. Estimation of Age of Bloodstains by Mass-Spectrometry: A Metabolomic Approach. Analytical Chemistry, v. 90, n. 21, p. 12431–12441, 2018.

SHARMA, V.; KUMAR, R. Trends of chemometrics in bloodstain investigations. TrAC - Trends in Analytical Chemistry, v. 107, p. 181–195, 2018. Disponível em: https://doi.org/10.1016/j.trac.2018.08.006.

SHINE, S. M. et al. The applicability of fluorescence lifetime to determine the time since the deposition of biological stains. Analytical Methods, v. 9, n. 13, p. 2007–2013, 2017. Disponível em: http://xlink.rsc.org/?DOI=C6AY03099H.

SMIJS, T.; GALLI, F.; VAN ASTEN, A. Forensic potential of atomic force microscopy. Forensic Chemistry, v. 2, p. 93–104, nov. 2016. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S246817091630044>.

SUN, H. et al. Accurate Age Estimation of Bloodstains Based on Visible Reflectance Spectroscopy and Chemometrics Methods. IEEE Photonics Journal, v. 9, n. 1, p. 1–14, fev. 2017. Disponível em: http://ieeexplore.ieee.org/document/7814193/.

TAKAMURA, A. et al. Comprehensive modeling of bloodstain aging by multivariate Raman spectral resolution with kinetics. Communications Chemistry, v. 2, n. 1, p. 1–10, 2019. Disponível em: http://dx.doi.org/10.1038/s42004-019-0217-1.

TSURUGA, M. et al. The Molecular Mechanism of Autoxidation for Human Oxyhemoglobin. Journal of Biological Chemistry, v. 273, n. 15, p. 8607–8615, 1998.

VASCONCELOS, A. et al. Detergent formulations for wool domestic washings containing immobilized enzymes. Biotechnology Letters, v. 28, n. 10, p. 725–731, 2006.

VERMELHO, A. B.; BRANQUINHA, M. Enzimas proteolíticas: Aplicações biotecnológicas, Capítulo 11, pag 273-287, Editora Interciência, 1ª ed., January, 2008.

WFK, C. WFK Testmaterials Catalogue & Prices. p. 18, 2019. Disponível em: www.testmaterials.com.

WU, Y. et al. Time-dependent surface adhesive force and morphology of RBC measured by AFM. Micron, v. 40, n. 3, p. 359–364, 2009.

ZADORA, G.; MENŻYK, A. In the pursuit of the holy grail of forensic science – Spectroscopic studies on the estimation of time since deposition of bloodstains. TrAC - Trends in Analytical Chemistry, v. 105, p. 137–165, ago. 2018. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0165993618300657.

ZHAO, H. et al. Identification of aged bloodstains through mRNA profiling: Experiments results on selected markers of 30- and 50-year-old samples. Forensic Science International, v. 272, p. e1–e6, mar. 2017. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0379073817300117.




DOI: http://dx.doi.org/10.31412%2Frbcp.v11i3.666

Apontamentos

  • Não há apontamentos.




Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.