Detecção de Metanfetamina em Impressões Digitais
Main Article Content
Abstract
Um substrato SERS ativo baseado em nanopartículas de prata dispersas em gel de agarose (AgNPs/Agar) foi investigado para detecção de Metanfetamina (MA) em solução e em digitais reveladas. O gel de AgNPs/Agar foi depositado em laminas de alumínio com 25 × 25 mm, utilizadas como suporte para coletar a impressão digital. As AgNPs apresentaram um diâmetro médio de 13,5 nm, determinado por microscopia de transmissão eletrônica e apresentaram máximo de absorção em 421 nm, atribuído à excitação dos plasmons de superfície nas AgNPs.Esse sistema demostrou ser útil para detectar MA em soluções aquosas em concentrações menores 1,0´10-5mol/L, assim como em impressões digitais, em quantidades da droga inferiores a 150 mg, mesmo depois do processo de revelação.
Article Details
The journal has exclusive rights over the first publication, printed and/or digital, of this academic text, which does not affect the copyright of the person responsible for the research.
The reproduction (in whole or in part) of the published material depends on the express mention of this journal as the origin, by citing the volume, edition number and the DOI link for cross-reference. For rights purposes, the original publication source must be recorded.
The use of the results published here in other vehicles of scientific divulgation, even if by the authors, depends on the express indication of this journal as a means of original publication, under penalty of characterizing a situation of self-plagiarism.
____________________________________________
Additional information and author statements
(scientific integrity)
Declaration of conflict of interest: The author(s) confirm that there are no conflicts of interest in conducting this research and writing this article.
Authorship statement: All and only researchers who meet the authorship requirements for this article are listed as authors; all co-authors are fully responsible for this work in its entirety.
Declaration of originality: The author(s) guarantee that the text published here has not been previously published elsewhere and that future republication will only be made with express reference to the original place of publication; also certifies that there is no plagiarism of third-party material or self-plagiarism.
____________________________________________
Archiving and distribution
The final published PDF can be archived, without restrictions, on any open access server, indexer, repository or personal page, such as Academia.edu and ResearchGate.
How to Cite
References
ALCOLEA PALAFOX, M. Scaling factors for the prediction of vibrational spectra. I. Benzene molecule. International Journal of Quantum Chemistry, 77, 2000. 661–684.
ANDREOU, C. et al. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS nano, 7, 2013. 7157-7164.
BERG, R. et al. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species. Appl. Spectrosc. Rev., 46, 2011. 107-131.
CHASIN, A. A.; SALVADORI, M. C. Estimulantes do sistema nervoso central. In Fundamentos de toxicologia. [S.l.]: Atheneu, 1996.
CHOI, M. J. et al. Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Science International, 179, 2008. 87-97.
DE OLIVEIRA, K. V.; RUBIM, J. C. Surface-enhanced Raman spectroscopy of molecules adsorbed on silver nanoparticles dispersed an agarose gel and their adsorption isotherms. Vibrational Spectroscopy, 86, 2016. 290-301.
FARIA, D. D.; TEMPERINI, M. L.; SALA, O. Vinte anos de efeito SERS. Química Nova, 22, 1999. 541-552.
FAURSKOV NIELSEN, O.; LUND, P. A.; PRAESTGAARD, E. Hydrogen bonding in liquid formamide. The Journal of Chemical Physics A low frequency Raman study, 77, 1982. 3878-3883.
GAENSSLEN, R. E.; RAMOTOWSKI, R.; LEE, H. C. Advances in fingerprint technology. Boca Raton: CRC press, 2001.
INTERNATIONAL FINGERPRINT RESEARCH GROUP. Guidelines for the assessment of fingermark detection techniques. J. Forensic Identif., 64, 2014. 174-200.
ALCOLEA PALAFOX, M. Scaling factors for the prediction of vibrational spectra. I. Benzene molecule. International Journal of Quantum Chemistry, 77, 2000. 661–684.
ANDREOU, C. et al. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS nano, 7, 2013. 7157-7164.
BERG, R. et al. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species. Appl. Spectrosc. Rev., 46, 2011. 107-131.
CHASIN, A. A.; SALVADORI, M. C. Estimulantes do sistema nervoso central. In Fundamentos de toxicologia. [S.l.]: Atheneu, 1996.
CHOI, M. J. et al. Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Science International, 179, 2008. 87-97.
DE OLIVEIRA, K. V.; RUBIM, J. C. Surface-enhanced Raman spectroscopy of molecules adsorbed on silver nanoparticles dispersed an agarose gel and their adsorption isotherms. Vibrational Spectroscopy, 86, 2016. 290-301.
FARIA, D. D.; TEMPERINI, M. L.; SALA, O. Vinte anos de efeito SERS. Química Nova, 22, 1999. 541-552.
FAURSKOV NIELSEN, O.; LUND, P. A.; PRAESTGAARD, E. Hydrogen bonding in liquid formamide. The Journal of Chemical Physics A low frequency Raman study, 77, 1982. 3878-3883.
GAENSSLEN, R. E.; RAMOTOWSKI, R.; LEE, H. C. Advances in fingerprint technology. Boca Raton: CRC press, 2001.
INTERNATIONAL FINGERPRINT RESEARCH GROUP. Guidelines for the assessment of fingermark detection techniques. J. Forensic Identif., 64, 2014. 174-200.
LEGGETT, E. et al. “Intelligent” fingerprinting: simultaneous identification of drug metabolites and individuals by using antibody‐functionalized nanoparticles. Angewandte Chemie, 119, 2007. 4178-418.
MABBOTT, S. et al. Optimization of parameters for the quantitative surface-enhanced raman scattering detection of mephedrone using a fractional factorial design and a portable Raman spectrometer. Analytical chemistry, 85, 2012. 923-931.
MARTINEZ-CASTANON, G. A. et al. Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10, 2008. 1343-1348.
MAXWELL, J. C.; RUTKOWSKI, B. A. The prevalence of methamphetamine and amphetamine abuse in North America: a review of the indicators, 1992 – 2007. Drug Alcohol Rev, 2009. 229-235.
MICHAELS, A. M.; JIANG, J.; BRUS, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. The Journal of Physical Chemistry B, 104, 2000. 11965-11971.
MOFFAT, A. C. et al. Clarke's analysis of drugs and poisons. London: Pharmaceutical Press, 2011.
MUEHLETHALER, C.; LEONA, M.; LOMBARDI, J. R. Review of Surface Enhanced Raman Scattering Applications in Forensic Science. Analytical Chemistry, Nova Iorque, 88, 2016. 152–169.
NOGGLE, F. T. et al. Methods for the differentiation of methamphetamine from regioisomeric phenethylamines. Journal of chromatographic science, 33, 1991. 31-36.
PASSAGLI, M. Toxicologia Forense: Teoria e Prática. Campinas: Millennium Editora, 2011.
SALA, O. Fundamentos da espectroscopia Raman e no infravermelho. São Paulo: Unesp, 1996.
SANT ANA, A. C.; CORIO, P.; TEMPERINI, M. L. O efeito SERS na análise de traços: o papel das superfícies nanoestruturadas. Química Nova, 29, 2006. 805-810.
SANTANA, H. D. et al. Preparation and characterization of SERS-active substrates: a study of the crystal violet adsorption on silver nanoparticles. Química Nova, 29, 2006. 194-199.
SOUZA, J. A.; BEZERRA, C. C. M. Papiloscopia Forense. Brasília: Academia Nacional de Polícia, 2012. 321 p.
SWGDRUG. Scientific Working Group for the Analysis of Seized Drugs. Disponivel em: <http://www.swgdrug.org/>. Acesso em: 15 dez. 2017.
TRIPLETT, J. S. et al. Raman spectroscopy as a simple, rapid, nondestructive screening test for methamphetamine in clandestine laboratory liquid. Journal of forensic sciences, 58, 2013. 1607-1614.
TSUCHIHASHI, H. et al. Determination of Methanphetamine and Its Related Compounds Using Fourier Transform Raman Spectroscopy. Applied Spectroscopy, Osaka, 51, 1997.
UNODC. United Nations Office on Drugs and Crime. UNODC, 2016. Disponivel em: <http://www.unodc.org/lpo-brazil/pt/drogas/marco-legal.html>.
UNODC. World Drug Report 2016. United Nations Office on Drugs and Crime. Vienna. 2016.
WEN, D. et al. Fine structural tuning of fluorescent copolymer sensors for methamphetamine vapor detection. Sensors and Actuators B: Chemical, 168, 2012. 283– 288.
WEST, M. J.; WENT, M. J. The spectroscopic detection of drugs of abuse in fingerprints after development with powders and recovery with adhesive lifters. Spectrochimica Acta Part A 71, 71, 2008.
YANG, T. et al. Magnetically optimized SERS assay for rapid detection of trace drug-related biomarkers in saliva and fingerprints. Biosensors and Bioelectronics, 68, 2015. 350-357.
ZHANG, T. et al. Detection of methamphetamine and its main metabolite in fingermarks by liquid chromatography–mass spectrometry. Forensic Science International, 248, 2015. 10-14.