ELETROQUÍMICA FORENSE APLICADA NA REVELAÇÃO DE IMPRESSÕES DIGITAIS LATENTES
Contenido principal del artículo
Resumen
Impressões digitais latentes coletadas em cenas de crime são vestígios frequentes e relevantes às investigações policiais, entretanto ainda se observa baixas taxas de sucesso quanto à qualidade de sua revelação com as técnicas convencionais, especialmente no caso de superfícies metálicas. Nesse contexto, o trabalho apresenta uma estratégia de revelação de impressões digitais latentes através da eletrodeposição de polímeros condutores em superfícies metálicas, que se mostra como uma metodologia promissora para a Química Forense. Os resultados apresentaram detalhes completos das cristas papilares e impressões digitais totalmente identificáveis, mostrando se tratar de uma metodologia simples, eficiente, barata e de baixa toxicidade.
Detalles del artículo
La revista tiene derechos exclusivos sobre la primera publicación, impresa y/o digital, de este texto académico, lo que no afecta los derechos de autor del responsable de la investigación.
La reproducción (total o parcial) del material publicado depende de la mención expresa de esta revista como origen, citando el volumen, número de edición y el enlace DOI para la referencia cruzada. Para fines de derechos, se debe registrar la fuente de publicación original.
La utilización de los resultados aquí publicados en otros vehículos de divulgación científica, aunque sea por parte de los autores, depende de la indicación expresa de esta revista como medio de publicación original, so pena de caracterizar una situación de autoplagio.
____________________________________________
Información adicional y declaraciones del autor
(integridad científica)
Declaración de conflicto de interés: Los autores confirman que no existen conflictos de interés al realizar esta investigación y escribir este artículo.
Declaración de autoría: Todos y solo los investigadores que cumplen con los requisitos de autoría para este artículo se enumeran como autores; todos los coautores son totalmente responsables de este trabajo en su totalidad.
Declaración de originalidad: El(los) autor(es) garantiza(n) que el texto aquí publicado no ha sido publicado previamente en otro lugar y que las reediciones futuras sólo se harán con referencia expresa al lugar original de publicación; también certifica que no existe plagio de material de terceros ni autoplagio.
____________________________________________
Archivo y distribución
El PDF final publicado se puede archivar, sin restricciones, en cualquier servidor de acceso abierto, indexador, repositorio o página personal, como Academia.edu y ResearchGate.
Cómo citar
Referencias
ALMEIDA, A. K. A. et al. A magenta polypyrrole derivatised with Methyl Red azo dye: synthesis and spectroelectrochemical characterisation. Electrochimica Acta, v. 240, p. 239–249, 2017.
ASSIS, A. M. L. et al. Materiais Inovadores para Revelação de Impressões Digitais. Perícia Federal, v. 40, p. 10–14, 2017.
BANDEY, H. L. Fingerprint Development and Imaging Newsletter: Special Edition. HOSDB Investigation, Enforcement and Protection Sector, v. 54/04, p. 1–12, 2004.
BERESFORD, A. L. et al. Comparative Study of Electrochromic Enhancement of Latent Fingerprints with Existing Development Techniques. J Forensic Sci, v. 57, n. 1, p. 93–102, 2012.
BERESFORD, A. L.; HILLMAN, A. R. Electrochromic Enhancement of Latent Fingerprints on Stainless Steel Surfaces. Anal. Chem., v. 82, n. 2, p. 483–486, 2010.
BERSELLINI, C. et al. Development of Latent Fingerprints on Metallic Surfaces Using Electropolymerization Processes. Journal of Forensic Sciences, v. 46, n. 4, p. 871–877, 2001.
BROWN, R. M.; HILLMAN, A. R. Electrochromic enhancement of latent fingerprints by poly(3,4-ethylenedioxythiophene). Phys. Chem., v. 14, p. 8653–8661, 2012.
CADD, S. et al. Science and Justice Fingerprint composition and aging: A literature review. Science & Justice, 2015.
COSNIER, S.; KARYAKIN, A. Electropolymerization - Concepts, Materials and Applications. 1. ed. Weinheim: WILEY-VCH, 2010.
COSTA, B. M. F. et al. SATS@CdTe hierarchical structures emitting green to red colors developed for latent fingerprint applications. Dyes and Pigments, v. 180, n. January, p. 108483, 2020.
COSTA, C. V. et al. Bilayer systems based on conjugated polymers for fluorescence development of latent fingerprints on stainless steel. Synthetic Metals, v. 262, n. February, p. 116347, 2020.
ELBARDISY, H. M. et al. Forensic Electrochemistry: The Electroanalytical Sensing of Mephedrone Metabolites. ACS Omega, v. 4, n. 1, p. 1947–1954, 2019.
FAEZ, R. et al. Polímeros Condutores. Química Nova na Escola, v. 11, 2000.
FIGINI, A. R. L. Identificação Humana. 2. ed. Campinas: Millennium, 2006.
FIGINI, A. R. L. Datiloscopia e revelação de impressões digitais. 1. ed. Campinas: Millennium, 2012.
FUNG, T. C. et al. Investigation of hydrogen cyanide generation from the cyanoacrylate fuming process used for latent fingermark detection. Forensic Science International, v. 212, n. 1–3, p. 143–149, 2011.
GIROD, A.; RAMOTOWSKI, R.; WEYERMANN, C. Composition of fingermark residue: A qualitative and quantitative review. Forensic Science International, v. 223, n. 1–3, p. 10–24, 2012.
GREEN, R. A. et al. Conducting polymers for neural interfaces: Challenges in developing an effective long-term implant. Biomaterials, v. 29, n. 24–25, p. 3393–3399, 2008.
HUTCHINS, L. A. Systems of Friction Ridge Classification. In: The Fingerprint Sourcebook. 1. ed. USA: National Institute of Justice, 2012.
LEE, H. C. et al. Effect of Presumptive Test, Latent Fingerprint and Some Other Reagents and Materials on Subsequent Serological Identification, Genetic Marker and DNA Testing in Bloodstains. Journal of Forensic Identification1, v. 39, n. 6, p. 339–358, 1989.
LEE, H. C.; LADD, C. Preservation and Collection of Biological Evidence. Croatian Medical Journal, v. 42, n. 3, p. 225–228, 2001.
LI, K. et al. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angewandte Chemie - International Edition, v. 52, n. 44, p. 11542–11545, 2013.
NOGUEIRA, F. et al. Transmissive to Dark Electrochromic and Fluorescent Device Based on Poly(fluorene-bisthiophene) Derivative. J. Braz. Chem. Soc, v. 30, n. 12, p. 2702–2711, 2019.
OLSEN, R. D.; LEE, H. C. Identification of Latent Prints. In: Advances in fingerprint Technology. 2. ed. Washington DC: CRC Press, 2001.
RIBEIRO, A. S. et al. Characterization by Atomic Force Microscopy of Electrodeposited Films of Polypyrrole. Microsc Microanal, v. 11, p. 146–149, 2005.
ROZLOSNIK, N. New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes. Analytical and Bioanalytical Chemistry, v. 395, n. 3, p. 637–645, 2009.
SAPSTEAD, R. M. et al. Nanoscale control of interfacial processes for latent fingerprint enhancement. Faraday Discuss., v. 164, p. 391–410, 2013.
SAPSTEAD, R. M.; CORDEN, N.; HILLMAN, A. R. Latent fi ngerprint enhancement via conducting electrochromic copolymer fi lms of pyrrole and 3,4-ethylenedioxythiophene on stainless steel. Electrochimica Acta, v. 162, p. 119–128, 2015.
SEARS, V. G. et al. A methodology for finger mark research. Science & Justice, v. 52, n. 3, p. 145–160, 2012.
SILVA, A. J. C. et al. Copolymerisation as a way to enhance the electrochromic properties of an alkylthiophene oligomer and a pyrrole derivative: copolymer of 3,3 dihexyl-2,2 :5 ,2 :5 ,2 -quaterthiophene with (R)-(-)-3-(1-pyrrolyl)propyl-N-(3,5-dinitrobenzoyl)-α-phenylglycinate. Solar Energy Materials and Solar Cells, v. 134, p. 122–132, 2015.
SILVA, R. C. et al. Enhancing the electrochromic response of polyaniline films by the preparation of hybrid materials based on polyaniline, chitosan and organic modified clay. RSC Advances, v. 4, p. 14948–14955, 2014.
SILVA, R. C. et al. Electrochromic Properties of Polyaniline-Based Hybrid Organic/Inorganic Materials. v. 27, n. 10, p. 1847–1857, 2016.
SODHI, G. S.; KAUR, J. Powder method for detecting latent fingerprints: A review. Forensic Science International, v. 120, n. 3, p. 172–176, 2001.
VELHO, J. A.; COSTA, K. A.; DAMASCENO, C. T. M. Locais de Crime - dos vestígios à dinâmica criminosa. 1. ed. Campinas: Millennium, 2013.
WANG, M. et al. Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences. Adv. Funct. Mater., v. 27, n. 1606243, 2017.
WANG, X. et al. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. Journal of Biomedical Materials Research - Part A, v. 68, n. 3, p. 411–422, 2004.
WOLFART, F. et al. Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. J Solid State Electrochem, v. 21, n. 9, p. 2489–2515, 2017.
YAMASHITA, B.; FRENCH, M. Latent Print Development. In: The Fingerprint Sourcebook. 1. ed. Washington DC: National Institute of Justice, 2012. p. 155–222