Revelação de Impressões Digitais em Suportes Celulósicos e Cédulas de Dinheiro: uma revisão

Contenido principal del artículo

Bernardo José Munhoz Lobo
Júlio Lemos de Macedo

Resumen

O presente trabalho é um apanhado bibliográfico versando sobre a perícia de impressões digitais latentes em suportes porosos, especialmente em dinheiro. São expostos reveladores pertinentes a esse tipo de suporte e os esforços envidados, por instituições de diversas nacionalidades, ao tentar definir metodologias eficazes à revelação de impressões latentes em cédulas de dinheiro, tanto verdadeiro quanto falso. As metodologias encontradas apontaram procedimentos tão diversos quanto a variedade de espécies de cédulas estudadas, demonstrando que uma metodologia adequada ao dinheiro brasileiro não pode ser trazida de estudos internacionais sem devidas considerações e um processo de contextualização. A busca por impressões em cédulas falsas também deve ser tomada com a complexidade que representa, apesar de ser mais simples do que dinheiro verdadeiro, o conhecimento prévio dos aspectos intrínsecos ao suporte é determinante para o sucesso dos exames periciais e imprescindível ao definir como estes serão conduzidos.

Detalles del artículo

Cómo citar
Revelação de Impressões Digitais em Suportes Celulósicos e Cédulas de Dinheiro: uma revisão. Revista Brasileña de Ciencias Policiales, Brasília, Brasil, v. 11, n. 2, p. 21–48, 2020. DOI: 10.31412/rbcp.v11i2.676. Disponível em: https://periodicos.pf.gov.br/index.php/RBCP/article/view/676.. Acesso em: 5 nov. 2024.
Sección
Dossiê
Biografía del autor/a

Bernardo José Munhoz Lobo, Polícia Federal

Químico Industrial Especialista em Identificação Humana, com ações voltadas ao desenvolvimento da papiloscopia e suas técnicas periciais.

Atua no Serviço de Perícia Papiloscópica do Instituto Nacional de Identificação, como Papiloscopista Policial Federal.

Júlio Lemos de Macedo, Universidade de Brasília – Instituto de Química

Possui graduação em Bacharelado em Química pela Universidade de Brasília (2001), mestrado em Química pela Universidade de Brasília (2003) e doutorado em Química pela Universidade de Brasília (2007). Atualmente é professor do magistério superior (Associado I) da Universidade de Brasília. Tem experiência na área de Química Inorgânica, com ênfase em Catálise, atuando principalmente no desenvolvimento, caracterização e aplicação de novos materiais. Grupo de Pesquisa: Grupo de Novos Materiais Para Catálise Química Sustentável

Cómo citar

Revelação de Impressões Digitais em Suportes Celulósicos e Cédulas de Dinheiro: uma revisão. Revista Brasileña de Ciencias Policiales, Brasília, Brasil, v. 11, n. 2, p. 21–48, 2020. DOI: 10.31412/rbcp.v11i2.676. Disponível em: https://periodicos.pf.gov.br/index.php/RBCP/article/view/676.. Acesso em: 5 nov. 2024.

Referencias

ALMOG, J. et al. Latent Fingerprint Visualization by 1,2-Indanedione and Related Compounds: Preliminary Results. Journal of forensic sciences, v. 44, n. 1, p. 14421J, 1 jan. 1999.

ALMOG, J. et al. Fingerprints' third dimension: the depth and shape of fingerprints penetration into paper--cross section examination by fluorescence microscopy. Journal of forensic sciences.49(5):981-5. Set. de 2004

AZOURY, M. et al. Fingerprint detection on counterfeit US dollar banknotes: the importance of preliminary paper examination. Journal of forensic sciences, v. 49, n. 5, p. 1015–1017, set. 2004.

BANDEY, H. et al. Fingermark visualisation update March 2017. [s.l.] CAST - Home Office - UK, 30 mar. 2017. Disponível em: <https://www.gov.uk/government/publications/fingermark-visualisation-update-march-2017>.

BIAŁEK, I.; ZAJĄC, A.; BRZOZOWSKI, J. Developing of latent fingerprints on banknotes issues by the national bank of Poland. Problems of Forensic Sciences, v. 68 (LXVIII), p. 339–350, 2006.

BLEAY, S. et al. Fingerprint Source Book V2.0: (second Edition). [s.l.] Home Office, 2017.

BLEAY, S. M.; CROXTON, R. S.; DE PUIT, M. Fingerprint Development Techniques, 2018. Disponível em: <http://dx.doi.org/10.1002/9781119187400>

BRASIL. 4764. Decreto no 4.764, de 5 de Fevereiro de 1903. . 5 fev. 1903.

BUMBRAH, G. S.; SODHI, G. S.; KAUR, J. Oil Red O (ORO) reagent for detection of latent fingermarks: a review. Egyptian Journal of Forensic Sciences, v. 9, n. 1, p. 3, 5 jan. 2019.

CANTU, A. A.; LEBEN, D. A.; WILSON, K. Some advances in the silver physical development of latent prints on paper. Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Defense and Law Enforcement II, 2003. Disponível em: <http://dx.doi.org/10.1117/12.498198>

CHAMPOD, C. et al. Fingerprints and Other Ridge Skin Impressions. [s.l.] CRC Press, 2016.

COELHO, B. P. A perspectiva da sociedade em relação ao uso das impressões digitais nas resoluções de crimes - influência da mídia do cotidiano. Revista Eletrônica IPOG Especialize On Line, v. 01, n. 16, dez. 2018.

CONN, C. et al. The effect of metal salt treatment on the photoluminescence of DFO-treated fingerprints. Forensic science international, v. 116, n. 2-3, p. 117–123, fev. 2001.

CRANE, N. J. et al. Infrared spectroscopic imaging for noninvasive detection of latent fingerprints. Journal of forensic sciences, v. 52, n. 1, p. 48–53, jan. 2007.

DEANS, J. Recovery of Fingerprints from Fire Scenes and Associated Evidence. Science & Justice, 2006. Disponível em: <http://dx.doi.org/10.1016/s1355-0306 (06)71589-1>

DOWNHAM, R. P. et al. Fingermark visualisation on uncirculated £5 (Bank of England) polymer notes: Initial process comparison studies. Forensic science international, v. 275, p. 30–43, jun. 2017.

DOWNHAM, R. P. et al. Sequential processing strategies for fingermark visualisation on uncirculated £10 (Bank of England) polymer banknotes. Forensic science international, v. 288, p. 140–158, jul. 2018.

SIEGEL, J. A.; SAUKKO, P. J.; HOUCK, M. M. Encyclopedia of Forensic Sciences. [s.l.] Academic Press, 2012.

EVERSE, K. E.; MENZEL, E. R. Sensitivity enhancement of ninhydrin-treated latent fingerprints by enzymes and metal salts. Journal of forensic sciences, v. 31, n. 2, p. 446–454, abr. 1986.

FRERICHS, I. et al. Location and development of fingerprints on euro banknotes. Preliminary report. Problems of Forensic Sciences, v. 51 (LI), p. 140–149, out. 2002.

GIROD, A.; RAMOTOWSKI, R.; WEYERMANN, C. Composition of fingermark residue: a qualitative and quantitative review. Forensic science international, v. 223, n. 1-3, p. 10–24, 30 nov. 2012.

HUNTY, M. D. L. et al. Understanding physical developer (PD): Part I – Is PD targeting lipids?Forensic Science International, 2015a. Disponível em: <http://dx.doi.org/10.1016/j.forsciint.2015.06.034>

HUNTY, M. DE LA et al. Understanding Physical Developer (PD): Part II – Is PD targeting eccrine constituents?Forensic Science International, 2015b. Disponível em: <http://dx.doi.org/10.1016/j.forsciint.2015.08.029>

HUNTY, M. DE LA et al. An effective Physical Developer (PD) method for use in Australian laboratories. Australian Journal of Forensic Sciences, 2018. Disponível em: <http://dx.doi.org/10.1080/00450618.2018.1424243>

JASUJA, O. P.; KAUR, A.; KUMAR, P. Fixing latent fingermarks developed by iodine fuming: a new method. Forensic science international, v. 223, n. 1-3, p. e47–52, 30 nov. 2012.

JASUJA, O. P.; SINGH, G. Development of latent fingermarks on thermal paper: preliminary investigation into use of iodine fuming. Forensic science international, v. 192, n. 1-3, p. e11–6, 20 nov. 2009.

JELLY, R. et al. The detection of latent fingermarks on porous surfaces using amino acid sensitive reagents: a review. Analytica chimica acta, v. 652, n. 1-2, p. 128–142, 12 out. 2009.

JONKER, H. et al. PD Processes for Photography at Extreme Resolution: I. PD-MD Based on Diazosulphonate. The Journal of Photographic Science, v. 19, n. 6, p. 187–198, 23 nov. 1971.

JOULLIÉ, M. M.; THOMPSON, T. R.; NEMEROFF, N. H. Ninhydrin and ninhydrin analogs. Syntheses and applications. Tetrahedron, v. 47, n. 42, p. 8791–8830, out. 1991.

KELLY, P. F. et al. The recovery of latent text from thermal paper using a simple iodine treatment procedure. Forensic science international, v. 217, n. 1-3, p. e27–30, 10 abr. 2012.

KING, R. S. P.; HALLETT, P. M.; FOSTER, D. Seeing into the infrared: A novel IR fluorescent fingerprint powder. Forensic science international, v. 249, p. e21–e26, abr. 2015.

LAM, R.; WILKINSON, D. Forensic light source and environmental effects on the performance of 1,2-indanedione-zinc chloride and 1,8-diazafluoren-9-one for the recovery of latent prints on porous substrates. Journal of Forensic Identification, v. 61, p. 607–620, 2011.

LENNARD, C. Fingermark detection and identification: current research efforts. The Australian journal of forensic sciences, v. 64, p. 1–21, 28 maio 2018.

LEVIN-ELAD, M. et al. 1,2-Indanedione - A winning ticket for developing fingermarks: A validation study. Forensic science international, v. 271, p. 8–12, fev. 2017.

LIBERTI, A.; CALABRÒ, G.; CHIAROTTI, M. Storage effects on ninhydrin-developed fingerprints enhanced by zinc complexation. Forensic science international, v. 72, n. 3, p. 161–169, abr. 1995.

LIN, T.; MENZEL, E. R. Fingerprints on counterfeit currency. (E. R. Menzel, A. Katzir, Eds.)Fluorescence Detection IV. Anais...: SPIE Proceedings. In: PHOTONICS WEST ’96. SPIE, 25 mar. 1996

MARRIOTT, C. et al. Evaluation of fingermark detection sequences on paper substrates. Forensic science international, v. 236, p. 30–37, mar. 2014.

MINK, T. et al. Determination of efficacy of fingermark enhancement reagents; the use of propyl chloroformate for the derivatization of fingerprint amino acids extracted from paper. Science & justice, v. 53, n. 3, p. 301–308, set. 2013.

NICOLASORA, N. et al. A validation study of the 1,2-indandione reagent for operational use in the UK: Part 2 - Optimization of processing conditions. Forensic science international, v. 288, p. 266–277, jul. 2018.

OLSEN, R. D. Scott’s Fingerprint Mechanics. [s.l.] Charles C. Thomas, 1978. p. 295

POUNDS, C. A. et al. The Use of 1,8-Diazafluoren-9-one (DFO) for the Fluorescent Detection of Latent Fingerprints on Paper. A Preliminary Evaluation. Journal of Forensic Sciences, 1990. Disponível em: <http://dx.doi.org/10.1520/jfs12813j>

RAMOTOWSKI, R. S. Lee and Gaensslen’s Advances in Fingerprint Technology. 3rd Edition ed. [s.l.] CRC Press, 2012.

SCOTCHER, K.; BRADSHAW, R. The analysis of latent fingermarks on polymer banknotes using MALDI-MS. Scientific reports, v. 8, n. 1, p. 8765, 8 jun. 2018.

SPINDLER, X. et al. The effect of zinc chloride, humidity and the substrate on the reaction of 1,2-indanedione-zinc with amino acids in latent fingermark secretions. Forensic science international, v. 212, n. 1-3, p. 150–157, 10 out. 2011.

STOILOVIC, M. Improved method for DFO development of latent fingerprints. Forensic science international, v. 60, n. 3, p. 141–153, ago. 1993.

STOILOVIC, M. et al. Evaluation of a 1,2-indanedione formulation containing zinc chloride for improved fingermark detection on paper. Journal of Forensic Identification, v. 57, n. 1, p. 4–18, jan. 2007.

WIESNER, S. et al. Chemical Development of Latent Fingerprints: 1,2-Indanedione Has Come of Age. Journal of Forensic Sciences, 2001. Disponível em: <http://dx.doi.org/10.1520/jfs15102j>

WILKINSON, D. Study of the reaction mechanism of 1,8-diazafluoren-9-one with the amino acid, l-alanine. Forensic science international, v. 109, n. 2, p. 87–103, mar. 2000.

ZHANG, M. et al. Systematic study of dye loaded small mesoporous silica nanoparticles for detecting latent fingerprints on various substrates. Journal of Porous Materials, v. 24, n. 1, p. 13–20, 29 fev. 2017.

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Artículos más leídos del mismo autor/a