Detecção de Metanfetamina em Impressões Digitais
Contenu principal de l'article
Résumé
Um substrato SERS ativo baseado em nanopartículas de prata dispersas em gel de agarose (AgNPs/Agar) foi investigado para detecção de Metanfetamina (MA) em solução e em digitais reveladas. O gel de AgNPs/Agar foi depositado em laminas de alumínio com 25 × 25 mm, utilizadas como suporte para coletar a impressão digital. As AgNPs apresentaram um diâmetro médio de 13,5 nm, determinado por microscopia de transmissão eletrônica e apresentaram máximo de absorção em 421 nm, atribuído à excitação dos plasmons de superfície nas AgNPs.Esse sistema demostrou ser útil para detectar MA em soluções aquosas em concentrações menores 1,0´10-5mol/L, assim como em impressões digitais, em quantidades da droga inferiores a 150 mg, mesmo depois do processo de revelação.
Renseignements sur l'article
La revue a des droits exclusifs sur la première publication, imprimée et/ou numérique, de ce texte académique, qui n'affecte pas le droit d'auteur de la personne responsable de la recherche.
La reproduction (totale ou partielle) du matériel publié dépend de la mention expresse de cette revue comme origine, en citant le volume, le numéro d'édition et le lien DOI pour renvoi. Aux fins des droits, la source de publication originale doit être enregistrée.
L'utilisation des résultats publiés ici dans d'autres véhicules de divulgation scientifique, même par les auteurs, dépend de l'indication expresse de cette revue comme moyen de publication originale, sous peine de caractériser une situation d'auto-plagiat.
______________________________________________
Informations supplémentaires et déclarations de l'auteur
(intégrité scientifique)
Déclaration de conflit d'intérêts : Le ou les auteurs confirment qu'il n'y a pas de conflits d'intérêts dans la conduite de cette recherche et la rédaction de cet article.
Déclaration de paternité : tous les chercheurs et uniquement ceux qui satisfont aux exigences de paternité de cet article sont répertoriés en tant qu'auteurs ; tous les co-auteurs sont entièrement responsables de ce travail dans son intégralité.
Déclaration d'originalité : le ou les auteurs garantissent que le texte publié ici n'a pas été publié auparavant ailleurs et que la future republication ne sera faite qu'avec une référence expresse au lieu de publication d'origine ; certifie également qu'il n'y a pas de plagiat de matériel tiers ou d'auto-plagiat.
______________________________________________
Archivage et diffusion
Le PDF final publié peut être archivé, sans restriction, sur n'importe quel serveur, indexeur, référentiel ou page personnelle en libre accès, comme Academia.edu et ResearchGate.
Comment citer
Références
ALCOLEA PALAFOX, M. Scaling factors for the prediction of vibrational spectra. I. Benzene molecule. International Journal of Quantum Chemistry, 77, 2000. 661–684.
ANDREOU, C. et al. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS nano, 7, 2013. 7157-7164.
BERG, R. et al. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species. Appl. Spectrosc. Rev., 46, 2011. 107-131.
CHASIN, A. A.; SALVADORI, M. C. Estimulantes do sistema nervoso central. In Fundamentos de toxicologia. [S.l.]: Atheneu, 1996.
CHOI, M. J. et al. Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Science International, 179, 2008. 87-97.
DE OLIVEIRA, K. V.; RUBIM, J. C. Surface-enhanced Raman spectroscopy of molecules adsorbed on silver nanoparticles dispersed an agarose gel and their adsorption isotherms. Vibrational Spectroscopy, 86, 2016. 290-301.
FARIA, D. D.; TEMPERINI, M. L.; SALA, O. Vinte anos de efeito SERS. Química Nova, 22, 1999. 541-552.
FAURSKOV NIELSEN, O.; LUND, P. A.; PRAESTGAARD, E. Hydrogen bonding in liquid formamide. The Journal of Chemical Physics A low frequency Raman study, 77, 1982. 3878-3883.
GAENSSLEN, R. E.; RAMOTOWSKI, R.; LEE, H. C. Advances in fingerprint technology. Boca Raton: CRC press, 2001.
INTERNATIONAL FINGERPRINT RESEARCH GROUP. Guidelines for the assessment of fingermark detection techniques. J. Forensic Identif., 64, 2014. 174-200.
ALCOLEA PALAFOX, M. Scaling factors for the prediction of vibrational spectra. I. Benzene molecule. International Journal of Quantum Chemistry, 77, 2000. 661–684.
ANDREOU, C. et al. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS nano, 7, 2013. 7157-7164.
BERG, R. et al. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species. Appl. Spectrosc. Rev., 46, 2011. 107-131.
CHASIN, A. A.; SALVADORI, M. C. Estimulantes do sistema nervoso central. In Fundamentos de toxicologia. [S.l.]: Atheneu, 1996.
CHOI, M. J. et al. Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Science International, 179, 2008. 87-97.
DE OLIVEIRA, K. V.; RUBIM, J. C. Surface-enhanced Raman spectroscopy of molecules adsorbed on silver nanoparticles dispersed an agarose gel and their adsorption isotherms. Vibrational Spectroscopy, 86, 2016. 290-301.
FARIA, D. D.; TEMPERINI, M. L.; SALA, O. Vinte anos de efeito SERS. Química Nova, 22, 1999. 541-552.
FAURSKOV NIELSEN, O.; LUND, P. A.; PRAESTGAARD, E. Hydrogen bonding in liquid formamide. The Journal of Chemical Physics A low frequency Raman study, 77, 1982. 3878-3883.
GAENSSLEN, R. E.; RAMOTOWSKI, R.; LEE, H. C. Advances in fingerprint technology. Boca Raton: CRC press, 2001.
INTERNATIONAL FINGERPRINT RESEARCH GROUP. Guidelines for the assessment of fingermark detection techniques. J. Forensic Identif., 64, 2014. 174-200.
LEGGETT, E. et al. “Intelligent” fingerprinting: simultaneous identification of drug metabolites and individuals by using antibody‐functionalized nanoparticles. Angewandte Chemie, 119, 2007. 4178-418.
MABBOTT, S. et al. Optimization of parameters for the quantitative surface-enhanced raman scattering detection of mephedrone using a fractional factorial design and a portable Raman spectrometer. Analytical chemistry, 85, 2012. 923-931.
MARTINEZ-CASTANON, G. A. et al. Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10, 2008. 1343-1348.
MAXWELL, J. C.; RUTKOWSKI, B. A. The prevalence of methamphetamine and amphetamine abuse in North America: a review of the indicators, 1992 – 2007. Drug Alcohol Rev, 2009. 229-235.
MICHAELS, A. M.; JIANG, J.; BRUS, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. The Journal of Physical Chemistry B, 104, 2000. 11965-11971.
MOFFAT, A. C. et al. Clarke's analysis of drugs and poisons. London: Pharmaceutical Press, 2011.
MUEHLETHALER, C.; LEONA, M.; LOMBARDI, J. R. Review of Surface Enhanced Raman Scattering Applications in Forensic Science. Analytical Chemistry, Nova Iorque, 88, 2016. 152–169.
NOGGLE, F. T. et al. Methods for the differentiation of methamphetamine from regioisomeric phenethylamines. Journal of chromatographic science, 33, 1991. 31-36.
PASSAGLI, M. Toxicologia Forense: Teoria e Prática. Campinas: Millennium Editora, 2011.
SALA, O. Fundamentos da espectroscopia Raman e no infravermelho. São Paulo: Unesp, 1996.
SANT ANA, A. C.; CORIO, P.; TEMPERINI, M. L. O efeito SERS na análise de traços: o papel das superfícies nanoestruturadas. Química Nova, 29, 2006. 805-810.
SANTANA, H. D. et al. Preparation and characterization of SERS-active substrates: a study of the crystal violet adsorption on silver nanoparticles. Química Nova, 29, 2006. 194-199.
SOUZA, J. A.; BEZERRA, C. C. M. Papiloscopia Forense. Brasília: Academia Nacional de Polícia, 2012. 321 p.
SWGDRUG. Scientific Working Group for the Analysis of Seized Drugs. Disponivel em: <http://www.swgdrug.org/>. Acesso em: 15 dez. 2017.
TRIPLETT, J. S. et al. Raman spectroscopy as a simple, rapid, nondestructive screening test for methamphetamine in clandestine laboratory liquid. Journal of forensic sciences, 58, 2013. 1607-1614.
TSUCHIHASHI, H. et al. Determination of Methanphetamine and Its Related Compounds Using Fourier Transform Raman Spectroscopy. Applied Spectroscopy, Osaka, 51, 1997.
UNODC. United Nations Office on Drugs and Crime. UNODC, 2016. Disponivel em: <http://www.unodc.org/lpo-brazil/pt/drogas/marco-legal.html>.
UNODC. World Drug Report 2016. United Nations Office on Drugs and Crime. Vienna. 2016.
WEN, D. et al. Fine structural tuning of fluorescent copolymer sensors for methamphetamine vapor detection. Sensors and Actuators B: Chemical, 168, 2012. 283– 288.
WEST, M. J.; WENT, M. J. The spectroscopic detection of drugs of abuse in fingerprints after development with powders and recovery with adhesive lifters. Spectrochimica Acta Part A 71, 71, 2008.
YANG, T. et al. Magnetically optimized SERS assay for rapid detection of trace drug-related biomarkers in saliva and fingerprints. Biosensors and Bioelectronics, 68, 2015. 350-357.
ZHANG, T. et al. Detection of methamphetamine and its main metabolite in fingermarks by liquid chromatography–mass spectrometry. Forensic Science International, 248, 2015. 10-14.