Detecção de Metanfetamina em Impressões Digitais
Contenuto principale dell'articolo
Abstract
Um substrato SERS ativo baseado em nanopartículas de prata dispersas em gel de agarose (AgNPs/Agar) foi investigado para detecção de Metanfetamina (MA) em solução e em digitais reveladas. O gel de AgNPs/Agar foi depositado em laminas de alumínio com 25 × 25 mm, utilizadas como suporte para coletar a impressão digital. As AgNPs apresentaram um diâmetro médio de 13,5 nm, determinado por microscopia de transmissão eletrônica e apresentaram máximo de absorção em 421 nm, atribuído à excitação dos plasmons de superfície nas AgNPs.Esse sistema demostrou ser útil para detectar MA em soluções aquosas em concentrações menores 1,0´10-5mol/L, assim como em impressões digitais, em quantidades da droga inferiores a 150 mg, mesmo depois do processo de revelação.
Dettagli dell'articolo
La rivista ha diritti esclusivi sulla prima pubblicazione, stampata e/o digitale, di questo testo accademico, che non pregiudica il diritto d'autore del responsabile della ricerca.
La riproduzione (in tutto o in parte) del materiale pubblicato dipende dalla citazione espressa di questa rivista come origine, citando il volume, il numero di edizione e il link DOI per un riferimento incrociato. Ai fini dei diritti, la fonte di pubblicazione originale deve essere registrata.
L'utilizzo dei risultati qui pubblicati in altri veicoli di divulgazione scientifica, anche se da parte degli autori, dipende dall'espressa indicazione di questa rivista come mezzo di pubblicazione originale, pena la caratterizzazione di una situazione di autoplagio.
____________________________________________
Informazioni aggiuntive e dichiarazioni dell'autore
(integrità scientifica)
Dichiarazione di conflitto di interessi: gli autori confermano che non vi sono conflitti di interesse nello svolgimento di questa ricerca e nella stesura di questo articolo.
Dichiarazione di paternità: tutti e solo i ricercatori che soddisfano i requisiti di paternità per questo articolo sono elencati come autori; tutti i coautori sono pienamente responsabili di questo lavoro nella sua interezza.
Dichiarazione di originalità: L'autore(i) garantisce che il testo qui pubblicato non è stato precedentemente pubblicato altrove e che la futura ripubblicazione sarà effettuata solo con espresso riferimento al luogo di pubblicazione originale; certifica inoltre che non vi è plagio di materiale di terzi o autoplagio.
____________________________________________
Archiviazione e distribuzione
Il PDF finale pubblicato può essere archiviato, senza restrizioni, su qualsiasi server ad accesso aperto, indicizzatore, repository o pagina personale, come Academia.edu e ResearchGate.
Come citare
Riferimenti bibliografici
ALCOLEA PALAFOX, M. Scaling factors for the prediction of vibrational spectra. I. Benzene molecule. International Journal of Quantum Chemistry, 77, 2000. 661–684.
ANDREOU, C. et al. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS nano, 7, 2013. 7157-7164.
BERG, R. et al. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species. Appl. Spectrosc. Rev., 46, 2011. 107-131.
CHASIN, A. A.; SALVADORI, M. C. Estimulantes do sistema nervoso central. In Fundamentos de toxicologia. [S.l.]: Atheneu, 1996.
CHOI, M. J. et al. Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Science International, 179, 2008. 87-97.
DE OLIVEIRA, K. V.; RUBIM, J. C. Surface-enhanced Raman spectroscopy of molecules adsorbed on silver nanoparticles dispersed an agarose gel and their adsorption isotherms. Vibrational Spectroscopy, 86, 2016. 290-301.
FARIA, D. D.; TEMPERINI, M. L.; SALA, O. Vinte anos de efeito SERS. Química Nova, 22, 1999. 541-552.
FAURSKOV NIELSEN, O.; LUND, P. A.; PRAESTGAARD, E. Hydrogen bonding in liquid formamide. The Journal of Chemical Physics A low frequency Raman study, 77, 1982. 3878-3883.
GAENSSLEN, R. E.; RAMOTOWSKI, R.; LEE, H. C. Advances in fingerprint technology. Boca Raton: CRC press, 2001.
INTERNATIONAL FINGERPRINT RESEARCH GROUP. Guidelines for the assessment of fingermark detection techniques. J. Forensic Identif., 64, 2014. 174-200.
ALCOLEA PALAFOX, M. Scaling factors for the prediction of vibrational spectra. I. Benzene molecule. International Journal of Quantum Chemistry, 77, 2000. 661–684.
ANDREOU, C. et al. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS nano, 7, 2013. 7157-7164.
BERG, R. et al. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species. Appl. Spectrosc. Rev., 46, 2011. 107-131.
CHASIN, A. A.; SALVADORI, M. C. Estimulantes do sistema nervoso central. In Fundamentos de toxicologia. [S.l.]: Atheneu, 1996.
CHOI, M. J. et al. Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Science International, 179, 2008. 87-97.
DE OLIVEIRA, K. V.; RUBIM, J. C. Surface-enhanced Raman spectroscopy of molecules adsorbed on silver nanoparticles dispersed an agarose gel and their adsorption isotherms. Vibrational Spectroscopy, 86, 2016. 290-301.
FARIA, D. D.; TEMPERINI, M. L.; SALA, O. Vinte anos de efeito SERS. Química Nova, 22, 1999. 541-552.
FAURSKOV NIELSEN, O.; LUND, P. A.; PRAESTGAARD, E. Hydrogen bonding in liquid formamide. The Journal of Chemical Physics A low frequency Raman study, 77, 1982. 3878-3883.
GAENSSLEN, R. E.; RAMOTOWSKI, R.; LEE, H. C. Advances in fingerprint technology. Boca Raton: CRC press, 2001.
INTERNATIONAL FINGERPRINT RESEARCH GROUP. Guidelines for the assessment of fingermark detection techniques. J. Forensic Identif., 64, 2014. 174-200.
LEGGETT, E. et al. “Intelligent” fingerprinting: simultaneous identification of drug metabolites and individuals by using antibody‐functionalized nanoparticles. Angewandte Chemie, 119, 2007. 4178-418.
MABBOTT, S. et al. Optimization of parameters for the quantitative surface-enhanced raman scattering detection of mephedrone using a fractional factorial design and a portable Raman spectrometer. Analytical chemistry, 85, 2012. 923-931.
MARTINEZ-CASTANON, G. A. et al. Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10, 2008. 1343-1348.
MAXWELL, J. C.; RUTKOWSKI, B. A. The prevalence of methamphetamine and amphetamine abuse in North America: a review of the indicators, 1992 – 2007. Drug Alcohol Rev, 2009. 229-235.
MICHAELS, A. M.; JIANG, J.; BRUS, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. The Journal of Physical Chemistry B, 104, 2000. 11965-11971.
MOFFAT, A. C. et al. Clarke's analysis of drugs and poisons. London: Pharmaceutical Press, 2011.
MUEHLETHALER, C.; LEONA, M.; LOMBARDI, J. R. Review of Surface Enhanced Raman Scattering Applications in Forensic Science. Analytical Chemistry, Nova Iorque, 88, 2016. 152–169.
NOGGLE, F. T. et al. Methods for the differentiation of methamphetamine from regioisomeric phenethylamines. Journal of chromatographic science, 33, 1991. 31-36.
PASSAGLI, M. Toxicologia Forense: Teoria e Prática. Campinas: Millennium Editora, 2011.
SALA, O. Fundamentos da espectroscopia Raman e no infravermelho. São Paulo: Unesp, 1996.
SANT ANA, A. C.; CORIO, P.; TEMPERINI, M. L. O efeito SERS na análise de traços: o papel das superfícies nanoestruturadas. Química Nova, 29, 2006. 805-810.
SANTANA, H. D. et al. Preparation and characterization of SERS-active substrates: a study of the crystal violet adsorption on silver nanoparticles. Química Nova, 29, 2006. 194-199.
SOUZA, J. A.; BEZERRA, C. C. M. Papiloscopia Forense. Brasília: Academia Nacional de Polícia, 2012. 321 p.
SWGDRUG. Scientific Working Group for the Analysis of Seized Drugs. Disponivel em: <http://www.swgdrug.org/>. Acesso em: 15 dez. 2017.
TRIPLETT, J. S. et al. Raman spectroscopy as a simple, rapid, nondestructive screening test for methamphetamine in clandestine laboratory liquid. Journal of forensic sciences, 58, 2013. 1607-1614.
TSUCHIHASHI, H. et al. Determination of Methanphetamine and Its Related Compounds Using Fourier Transform Raman Spectroscopy. Applied Spectroscopy, Osaka, 51, 1997.
UNODC. United Nations Office on Drugs and Crime. UNODC, 2016. Disponivel em: <http://www.unodc.org/lpo-brazil/pt/drogas/marco-legal.html>.
UNODC. World Drug Report 2016. United Nations Office on Drugs and Crime. Vienna. 2016.
WEN, D. et al. Fine structural tuning of fluorescent copolymer sensors for methamphetamine vapor detection. Sensors and Actuators B: Chemical, 168, 2012. 283– 288.
WEST, M. J.; WENT, M. J. The spectroscopic detection of drugs of abuse in fingerprints after development with powders and recovery with adhesive lifters. Spectrochimica Acta Part A 71, 71, 2008.
YANG, T. et al. Magnetically optimized SERS assay for rapid detection of trace drug-related biomarkers in saliva and fingerprints. Biosensors and Bioelectronics, 68, 2015. 350-357.
ZHANG, T. et al. Detection of methamphetamine and its main metabolite in fingermarks by liquid chromatography–mass spectrometry. Forensic Science International, 248, 2015. 10-14.